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In this note, we will show how transformations can be used to obtain a radically simple derivation of the
equation of the line of best fit. Our approach also gives a simple geometric interpretation of the Pearson
correlation coefficient.

Given a sequence of n points in the plane (X1,Y7),...,(X,,Y,) we seek the linear equation y = a + bx
that approximates the points as closely as possible, in the sense that the sum of the squared residuals
E=%" (Yi—a—0bX;)? is minimized.

We assume that not all of the points lie on a single horizontal or vertical line. In that case, we can apply
a transformation to the points so that > z; = > y; = 0 and Y a? = > y? = 1. The transformation is
defined by
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This transformation is linear, so it maps lines to lines. If we transform a line fitted to the data, the sum
of squared residuals is multiplied by a positive constant factor. Therefore, the transformation preserves the
line of best fit.

Let » = > x;y;. Then
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The sum is minimized when a = 0 and b = r, so the line of best fit is y = rx. What a simple equation!
Unfortunately, the equation is a bit messier when expressed in terms of the original variables.
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Note that r is the Pearson correlation coefficient of the sample. This shows that the correlation coefficient
can be interpreted geometrically as the slope of the line of best fit when the z and y values are standardized.




